環(huán)氧樹脂交聯(lián)密度-低場核磁法
環(huán)氧樹脂屬于熱固性樹脂,同固化劑混合后,通過環(huán)氧樹脂分子和固化劑分子的相互接觸、纏繞達到均勻分布的狀態(tài)。環(huán)氧基同固化劑氨基中的活性氫發(fā)生縮合聚合反應(yīng),從而形成高分子量的環(huán)氧化合物,具備了耐熱、高強度、耐水、耐溶劑、耐鹽霧、粘接強度、耐壓絕緣等使用性能。環(huán)氧樹脂的物理狀態(tài)變化是由化學(xué)變化引起的,逐步聚合的反應(yīng)程度將直接影響固化物的最終使用性能。
交聯(lián)密度就是交聯(lián)聚合物里面交聯(lián)鍵的多少,一般用網(wǎng)鏈分子量的大小來表示。交聯(lián)密度越大,也就是單位體積內(nèi)的交聯(lián)鍵越多,交聯(lián)程度更大。對于用作塑料的交聯(lián)聚合物來講,比如環(huán)氧樹脂,交聯(lián)密度越大,其耐熱性更好,拉伸強度增加,但是過高的交聯(lián)度會導(dǎo)致沖擊強度下降。對于用作橡膠的交聯(lián)聚合物,比如各種橡膠,交聯(lián)密度大,力學(xué)強度更好,回彈性更好。
環(huán)氧樹脂交聯(lián)密度是衡量聚合反應(yīng)度的指標,交聯(lián)密度對環(huán)氧樹脂最終性能的影響至關(guān)重要,一般環(huán)氧體系需要達到75%甚至更高的交聯(lián)度,性能才能得到體現(xiàn)。
低場核磁法如何環(huán)氧樹脂交聯(lián)密度:
低場核磁法是研究高分子材料中分子動力學(xué)的一種非常重要和有效的手段.該技術(shù)的一個重要特點是可以通過合理的實驗方法,實現(xiàn)對研究體系中從低頻(Hz)到中頻(kHz)乃至高頻(MHz)范圍內(nèi)分子運動的觀測.因此.核磁法非常適合研究高分子體系中各類不同尺度分子運動.高分子材料中分子運動與交聯(lián)密度密切相關(guān),通過分子運動的信息即可反映樣品的交聯(lián)密度。
低場核磁法環(huán)氧樹脂交聯(lián)密度測試原理:
低場核磁法的主要檢測對象是氫核(1H),由于聚合物中不同鏈段上的H所處的周圍環(huán)境不一致,H的自旋磁矩(核自旋)存在差異。施加射頻脈沖后,自旋系統(tǒng)在恢復(fù)熱平衡狀態(tài)的過程中表現(xiàn)出來的弛豫行為不同,通過弛豫時間的差異可以體系聚合物的分子動力學(xué)信息。而分子分子動力學(xué)信息直接與聚合物的交聯(lián)密度、老化、填充劑相關(guān)。
分子內(nèi)和分子間氫質(zhì)子的偶極相互作用產(chǎn)生核磁共振的橫向弛豫。當溫度遠遠高于聚合物的玻璃態(tài)溫度時,聚合物網(wǎng)絡(luò)中的這種偶極相互作用被認為是熱分子運動的平均。由于聚合物單鏈中的氫質(zhì)子被作為核磁共振測量的探針,于是一種修正的單鏈模型被引入并用來解釋聚合物的橫向弛豫。
固化體系環(huán)氧樹脂交聯(lián)密度提升的途徑:
1. 提高固化溫度:排除爆聚前提下,低溫固化體系在常溫下具有更高交聯(lián)度。
2.延長固化時間:延長固化時間能提升交聯(lián)度,隨著固化的進程,位阻達到一定的程度,交聯(lián)度提升幅度和程度就會大打折扣。
3.促進劑的作用:促進劑能降低體系活化能,促進體系放熱,用量的大小跟提高活性的程度有關(guān)。但隨著位阻的增大,提升的幅度同樣有限。
4.環(huán)氧體系中其余材料的配合:含吸電子基團的材料有延遲反應(yīng)的效果,含供電子基團材料有促進效果。如酯類延遲反應(yīng),酚類加速放熱,含硅醇基的活性硅微粉有促進效果等等。
5.階段性升溫固化:一定溫度條件下達到一定交聯(lián)度以后,進而提升固化溫度,外加能量越過位阻繼續(xù)反應(yīng),從而進一步提升交聯(lián)度。